Martin JC, Berton A, Ginies C, Bott R, Scheercousse P, Saddi A, Gripois D, Landrier JF, Dalemans D, Alessi MC, Delplanque B - 46750 N - Am J Physiol Heart Circ Physiol 2015 ; in press.

Multi-level systems biology modeling characterized the atheroprotective efficiencies of modified dairy fats in a hamster model

We assessed the atheroprotective efficiency of modified dairy fats in hyperlipidemic hamsters. A systems biology approach was implemented to reveal and quantify the dietary fat-related components of the disease. Three modified dairy fats (40% energy) were prepared from regular butter by mixing with a plant oil mixture, by removing cholesterol alone or by removing cholesterol in combination with reducing saturated fatty acids. A plant oil mixture with regular butter was used as the control diet. The atherosclerosis severity (aortic cholesteryl-ester level) was higher in the regular butter-fed hamsters than in the other four groups (P < 0.05). Eighty-seven of the 1666 variables measured from multi-platform analysis were found to be strongly associated with the disease. When aggregated into 10 biological clusters combined into a multivariate predictive equation, these 87 variables explained 81% of the disease variability. The biological cluster “regulation of lipid transport and metabolism” appeared central to atherogenic development relative to diets. The “vitamin E metabolism” cluster was the main driver of atheroprotection with the best performing transformed dairy fat. Under conditions that promote atherosclerosis, the impact of dairy fats on atherogenesis could be greatly ameliorated by technological modifications. Our modeling approach allowed for identifying and quantifying the contribution of complex factors to atherogenic development in each dietary setup.